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Overview

• IsaFoR + CeTA:
Certifying Termination and Complexity Proofs

• Certifying Matrix Growth

• Formalization of the Perron–Frobenius Theorem
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Certification of Termination Proofs

• automatic termination and complexity tools
– powerful, complex, unreliable

•
certifiers
– reliable, soundness proof in proof assistants
– revealed errors in tools and papers

• certified termination and complexity analysis

TRS
okay / reject

unsupported

answer

certificate

• CeTA: certifier for termination, complexity, confluence, ..
• soundness of CeTA: Isabelle Formalization of Rewriting

developed in collaboration with Christian Sternagel and
. . .
• this talk

improvements of IsaFoR/CeTA for complexity proofs
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Complexity of Term Rewrite Systems

sort(Cons(x, xs))→ insort(x, sort(xs))

sort(Nil)→ Nil

insort(x,Cons(y, ys))→ Cons(x,Cons(y, ys)) | x 6 y

insort(x,Cons(y, ys))→ Cons(y, insort(x, ys)) | x 66 y

insort(x,Nil)→ Cons(x,Nil)

Aim: bound on maximal number of rewrite steps starting from

sort(Cons(x1, . . .Cons(xn,Nil)))
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Running Automated Complexity tool
Running TCT on TRS yields O(n2) + certificate

[[sort]](xs) =

3 3 0

0 0 1

0 0 1

 · [[xs]]

[[insort]](x, xs) =

1 1 2

0 0 1

0 0 1

 · [[xs]] +
2

1

2



[[Cons]](x, xs) =

1 1 0

0 0 1

0 0 1


︸ ︷︷ ︸

A

· [[xs]] +

0

1

2



[[Nil]] =

1

0

2


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Certification — Step 1

• ensure termination:
check strict decrease in every rewrite step

• for rewrite rule sort(Cons(x, xs))→ insort(x, sort(xs))
check

[[sort(Cons(x, xs))]] =3 3 3

0 0 1

0 0 1

· [[xs]] +
3

2

2

 >

≥
≥

3 3 3

0 0 1

0 0 1

· [[xs]] +
2

1

2


= [[insort(x, sort(xs))]]
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Certification — Step 2

• bound initial interpretation

[[sort(Cons(x1, . . .Cons(xn,Nil)))]] =3 3 0

0 0 1

0 0 1


An

1

0

2

+
∑
i<n

Ai

0

1

2


 ∈ O(n · An)

=⇒ key analysis: growth of values of An depending on n
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Matrix Growth

• input: non-negative real matrix

A =

1 1 0

0 0 1

0 0 1


• task: decide matrix growth

how large do values in An get for increasing n?
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Eigenvalues and eigenvectors

Matrix A has eigenvector v 6= 0 with eigenvalue λ if

Av = λv

Consequences
• Anv = λnv
• |Anv| = |λ|n|v|
• if |λ| > 1 then An grows exponentially

Theorem

An grows polynomially if and only if
|λ| 6 1
for all eigenvalues λ of A

Remark
• λ is eigenvalue of A if and only if
λ is root of characteristic polynomial χA
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Eigenvalues and eigenvectors

Matrix A has eigenvector v 6= 0 with eigenvalue λ if

Av = λv

Consequences
• Anv = λnv
• |Anv| = |λ|n|v|
• if |λ| > 1 then An grows exponentially

Theorem

An ∈ O(nd) if and only if
|λ| 6 1 and |λ| = 1 −→ max-size (Jordan Blocks λ) 6 d+ 1
for all eigenvalues λ of A

Remark
• λ is eigenvalue of A if and only if
λ is root of characteristic polynomial χA
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Old certification algorithm for An ∈ O(nd)
Input: Matrix A and degree d
Output: Accept or assertion failure

1 Compute all eigenvalues λ1, . . . , λn of A
(all complex roots of χA)

2 Compute spectral radius ρA := maxi |λi|
3 Assert ρA 6 1
4 For each λi with |λi| = 1, and Jordan block of A and λi with

size si, assert si 6 d+ 1
5 Accept
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Example of linear growth

Input: Matrix A and degree d
Output: Accept or assertion failure

1 Compute all eigenvalues λ1, . . . , λn of A
(all complex roots of χA)

2 Compute spectral radius ρA := maxi |λi|
3 Assert ρA 6 1
4 For each λi with |λi| = 1, and Jordan block of A and λi with

size si, assert si 6 d+ 1
5 Accept

Input: A =

1 1 0

0 0 1

0 0 1

 ,d = 1

1. λ1 = 1, λ2 = 0

2. ρA = 1

4. s1 = 2 6 d+ 1
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Another example

Input: A =
1

2


2 0 0 0

0 0 0 1

0 1 0 1

0 0 1 1


1. χA =

(x− 1) (8x3 − 4x2 − 2x− 1)

8
λ1 = 1

λ2 = (root #1 of f1)

λ3 = (root #1 of f2) + (root #1 of f3)i

λ4 = (root #1 of f2) + (root #2 of f3)i

f1 = 8x3 − 4x2 − 2x− 1

f2 = 32x3 − 16x2 + 1

f3 = 1024x6 + 512x4 + 64x2 − 11
12



The problem and its solution

• old algorithm requires precise calculations (|λi| = 1)

• precise calculations are possible with algebraic numbers,
but expensive

• aim: avoid explicit computation of eigenvalues

• solution: apply the Perron–Frobenius theorem
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Perron–Frobenius, Part 1

Theorem (Perron–Frobenius)

Let A be a non-negative real matrix

• ρA is an eigenvalue of A

Consequence
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Perron–Frobenius, Part 2

Theorem (Perron–Frobenius)

Let A be a non-negative real and irreducible matrix

• ρA is an eigenvalue of A

• ρA has multiplicity 1

• ρA is only eigenvalue with non-negative real eigenvector

• ∃f k. χA = f · (xk − ρkA) ∧ (f(y) = 0 −→ |y| < ρA)

• . . .

Consequences
• non-negative real and irreducible matrices

have constant or exponential growth
• complexity proofs with irreducible matrices cannot

prove runtime/derivational complexity O(nd) for d > 1
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Perron–Frobenius, Part 3

Theorem

Let A be a non-negative real matrix

• ρA is an eigenvalue of A

• ∃f K. χA = f ·
∏

k∈K(x
k − ρkA) ∧ (f(y) = 0 −→ |y| < ρA)

Consequence
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Uniqueness of f and K

Theorem

Let A be a non-negative real matrix

• ρA is an eigenvalue of A

• ∃!f K. χA = f ·
∏

k∈K(x
k − ρkA) ∧ (f(y) = 0 −→ |y| < ρA)

• decompose χA computes f and K for ρA = 1

Consequence
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New certification algorithm for An ∈ O(nd)

∃!f K. χA = f ·
∏
k∈K

(xk − ρkA) ∧ (f(y) = 0 −→ |y| < ρA)

Input: non-negative real matrix A and degree d

Output: Accept or assertion failure.

1 Assert that χA has no real roots in (1,∞) via Sturm’s
method

2 Compute K via decompose χA
3 For each k ∈ {1, . . . ,maxK} do

• mk := |{k′ ∈ K. k divides k′}|
• If mk > d+ 1 then check Jordan blocks for all primitive

roots of unity of degree k, i.e., assert Jordan block size
6 d+ 1

4 Accept
18



Experiments

large examples (dim A = 21)

• old: timeouts after 1 hour

• new: finished in fraction of second

matrices of termination competitions 2015–2018
(2 6 dim A 6 5)

• new algorithm 5x faster
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Unpublished new certification algorithm
for An ∈ O(nd)
New Theorem

If A is non-negative real matrix and ρA 6 1 then for every JB
with |λ| = 1 there exists JB of 1 which is at least as large
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Unpublished new certification algorithm
for An ∈ O(nd)
New Theorem

If A is non-negative real matrix and ρA 6 1 then for every JB
with |λ| = 1 there exists JB of 1 which is at least as large

Input: non-negative real matrix A and degree d
Output: Accept or assertion failure

1 Assert that χA has no real roots in (1,∞) via Sturm’s
method

2 Assert that each Jordan block of eigenvalue 1 has size
s 6 d+ 1

3 Accept

certifying matrix growth for complexity proofs
without algebraic numbers
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Improvements in Automation

• new certification algorithm runs in polynomial time

=⇒ there exists polynomial time SAT/SMT-encoding

=⇒ possibility to encode desired degree when searching for
matrix interpretation

• currently investigated by TCT-team

21



Part of Paper Proof

Definitions

X := {x ∈ Rn | x ≥ 0, x 6= 0}
X1 := {x ∈ X | ||x|| = 1}
Y := {(A+ I)nx | x ∈ X1}

r(x) := min
j,xj 6=0

(Ax)j
xj

rmax := max {r(y) | y ∈ Y}

Lemmas
• X1 and Y are compact
• r is continuous on Y
• rmax is well-defined (extreme value theorem)
• rmax = ρA
• χ′

A(ρA) =
∑

i χBi(ρA) > 0 where Bi = mat-delete A i i
22



Overview on Formalization

• HMA: Type-based vectors and matrices (ι :: finite→ α)

• JNF: Carrier-based vectors and matrices (N× (N→ α))

HMA library JNF library

compatible dimensions type-system explicit carrier

arithmetic, determinants, . . . 3 3

continuity, compactness, . . . 3

block-matrices, delete row, . . . 3

• formalization of Perron–Frobenius requires all features

=⇒ develop connection between both worlds: HMA connect
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Overview of Formalization

Perron–Frobenius
formalization

libraries HMA and JNF

Part 1
ρA is eigenvalue

Brouwer’s fixpoint theorem

Part 2
more thms for irred. A

extreme value theorem

derivative of χA
HMA connect

Part 3
more thms for arbitr. A

HMA connect

block decomposition

24



HMA Connect

• main aim: establish connection between JNF and HMA
• tool: transfer

• define correspondence-relation between vectors,
matrices, . . .

HMAvec :: N× (N→ α)→ (ι→ α)→ bool

HMAvec v w = (v = (CARD(ι), λi.wfrom-nat i))

where from-nat is some bijection between
ι and {0, . . . ,CARD(ι)− 1} ⊆ N

• prove transfer rules between constants of JNF and HMA

(HMAmat −−−→ HMAmat −−−→ HMAmat) op + op +

(HMAmat −−−→ op =) det det

• finally transfer complex statements between JNF and HMA
25



Transferring Theorems from JNF to HMA

• JNF lemma for derivative of characteristic polynomial

A ∈ carrier-mat n n −→
pderiv (charpoly A) =

∑
i<n charpoly (mat-delete A i i)

• transfer to HMA not yet possible: mat-delete not available

• solution: reformulate lemma

A ∈ carrier-mat n n −→ monom 1 1 ∗
pderiv (charpoly A) =

∑
i<n charpoly (mat-erase A i i)

• transfer to HMA

monom 1 1 ∗ pderiv (charpoly A) =∑
i charpoly (mat-erase A i i)
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Transferring Theorems from HMA to JNF

• Perron–Frobenius Theorem Part 1 (HMA)

real-non-neg-mat A −→ eigenvalue A (spectral-radius A)

• transfer to JNF

A ∈ carrier-mat (CARD(ι)) (CARD(ι)) −→
real-non-neg-mat A −→ eigenvalue A (spectral-radius A)

• post-processing with local type definition

A ∈ carrier-mat n n −→ n 6= 0 −→
real-non-neg-mat A −→ eigenvalue A (spectral-radius A)

27



Summary

• formalization of Perron–Frobenius theorem:
combination of two libraries via transfer + local types

• new theorem: Jordan blocks of spectral radius are largest

• improving IsaFoR/CeTA:
certifying complexity proofs without algebraic numbers

joint work with Jose Divasón, Sebastiaan Joosten,
Ondřej Kunčar, and Akihisa Yamada
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Future work / work in progress

Check termination proofs of programming languages

• formalize semantics of subset of LLVM IR in Isabelle
(ongoing)

• verify translation to integer transition systems
(future work)

• verify backend for integer transition systems
• SMT-solver for LRA (basic solver available, ongoing)
• bounds on integer solutions: LIA is in NP (unpublished)
• theory-solver for LIA (ongoing)
• SMT-solver for LIA (future work)
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