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Overview

® |saFoR + CeTA:
Certifying Termination and Complexity Proofs

e Certifying Matrix Growth

® Formalization of the Perron-Frobenius Theorem
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e CeTA: certifier for termination, complexity, confluence, ..
soundness of CeTA: Isabelle Formalization of Rewriting
developed in collaboration with Christian Sternagel and

this talk
improvements of IsaFoR/CeTA for complexity proofs



Complexity of Term Rewrite Systems

sort(Cons(x, xs)) — insort(x, sort(xs))
sort(Nil) — Nil
insort(x, Cons(y, ys)) — Cons(x, Cons(y,ys)) |x<y
insort(x, Cons(y, ys)) — Cons(y,insort(x,ys)) |xLy
insort(x, Nil) — Cons(x, Nil)

Aim: bound on maximal number of rewrite steps starting from

sort(Cons(x1, ... Cons(xp, Nil)))



Running Automated Complexity tool

Running TCT on TRS yields O nz) + certificate

—~

3 30
[sort](xs)= 10 0 1] -[xs]
0 01
1 1 2 2
finsort](x,xs) = [0 0 1| -[xs]+ |1
0 01 2
1 10 0
[Cons](x,xs)= |0 0 1| -[xs]+ |1
0 01 2
————
A
1
[Nil= |0

N



Certification — Step 1

® ensure termination:
check strict decrease in every rewrite step

e for rewrite rule sort(Cons(x, xs)) — insort(x, sort(xs))
check

[sort(Cons(x, xs))] =

3 3 3 3\ > /3 3 3 2
00 1|-[xs]+[2]>]0 0 1|-[xs]+ |1
00 1 2/ >\0 0 1 2

= [insort(x, sort(xs))]



Certification — Step 2

® bound initial interpretation

[sort(Cons(xi, ...Cons(xs, Nil)))] =

330 1 0
00 1|[A|o]+) Af1]]| c0O(n-A"
001 2) i<n \2

— key analysis: growth of values of A" depending on n



Matrix Growth

® input: non-negative real matrix

>
I
o o m

1
0
0

R~ O

® task: decide matrix growth

how large do values in A" get for increasing n?
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Eigenvalues and eigenvectors

Matrix A has eigenvector v # 0 with eigenvalue ) if
Av = \v
Consequences
e Ay = \v
° AV = [A]"]v|
e if |[A\| > 1 then A” grows exponentially

Theorem

A" € O(n9) if and only if
|A| <1and |\ =1-— max-size (Jordan Blocks \) < d+1
for all eigenvalues \ of A

Remark
® )\ is eigenvalue of A if and only if
A is root of characteristic polynomial xa



Old certification algorithm for A" € O(n")

Input: Matrix A and degree d
Output: Accept or assertion failure
@ Compute all eigenvalues A1, ..., A\, of A
(all complex roots of x4)
® Compute spectral radius pa := max; |\
© Assertpy <1
O For each ); with |\;| = 1, and Jordan bIock of A and A with
size s;, asserts; < d+ 1 — ‘
© Accept

05l

ool
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Example of linear growth

Input: Matrix A and degree d
Output: Accept or assertion failure
@ Compute all eigenvalues A\1,..., )\, of A
(all complex roots of xa)
® Compute spectral radius pa := max; |\j]
© Assert pp <1
O For each \; with || = 1, and Jordan block of A and )\; with
Size sj, asserts; <d+1
© Accept

11
Input: A=[0 0
0 0

4.51:2<d+1
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Another example

2 000
Input:A:1 0001
2o 1 01
0011
1.XA:(X—1)(8x3—4x2—2x—1)
8
A =1

A2 = (root #1 of f;)

A3 = (root #1 of f,) + (root #1 of f3)i
Aa = (root #1 of f;) + (root #2 of £3)i
fi=8x>—4x?>—2x—1

f, =32x3 —16x% +1

f3 = 1024x% + 512x* + 64x> — 11

12



The problem and its solution

old algorithm requires precise calculations (|A;| = 1)

® precise calculations are possible with algebraic numbers,
but expensive

® aim: avoid explicit computation of eigenvalues
® solution: apply the Perron-Frobenius theorem

13



Perron-Frobenius, Part 1

Theorem (Perron-Frobenius)

Let A be a non-negative real matrix
® pa is an eigenvalue of A

Consequence

‘complex plane complex plane

!

Re Re

14



Perron-Frobenius, Part 2

Theorem (Perron-Frobenius)

Let A be a non-negative real and irreducible matrix

pa is an eigenvalue of A

pa has multiplicity 1

pa is only eigenvalue with non-negative real eigenvector
k. xa =1 (X = p§) A(F(y) =0 — ly| < pa)
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Perron-Frobenius, Part 2

Theorem (Perron-Frobenius)
Let A be a non-negative real and irreducible matrix

® pa is an eigenvalue of A

® pa has multiplicity 1

® pa is only eigenvalue with non-negative real eigenvector
k. xa =1 (X = p§) A(F(y) =0 — ly| < pa)

Consequences
® non-negative real and irreducible matrices
have constant or exponential growth
® complexity proofs with irreducible matrices cannot
prove runtime/derivational complexity O(n9) ford > 1

15



Perron-Frobenius, Part 3

Theorem

Let A be a non-negative real matrix
® pa is an eigenvalue of A
© K. xa=F[Teex(X = pf) A (F(y) = 0 — ly| < pa)

complex plane comple:
15 " 1 :
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15 1
215 0 05 00 05 10 15 215 10 05 00 05 10 15
R R

16



Uniqueness of f and K

Theorem

Let A be a non-negative real matrix
® pa is an eigenvalue of A
o K. xa = - Tleex(* = pa) A (F(y) = 0 — |y] < pa)
® decompose xa computes f and K for pp =1

Consequence

complex plane complex plane

e P K=1{2,2,3}+

05
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New certification algorithm for A" € O(n¢)

K. xa=1F- [ = p5) A (Fy) =0 — ly| < pa)
kek

Input: non-negative real matrix A and degree d
Output: Accept or assertion failure.

@ Assert that ya4 has no real roots in (1, 00) via Sturm’s
method
® Compute K via decompose xa
© Foreachk € {1,...,maxK} do
* my = |{k’ € K. k divides k'}|
® If mg > d+ 1 then check Jordan blocks for all primitive
roots of unity of degree k, i.e., assert Jordan block size
<d+1
@ Accept

18



Experiments

large examples (dim A = 21)
® old: timeouts after 1 hour
® new: finished in fraction of second

matrices of termination competitions 2015-2018
(2 <dimA<5)

® new algorithm 5x faster

19



Unpublished new certification algorithm
for A" € O(nY)

New Theorem

If A is non-negative real matrix and ps < 1 then for every B
with |A\| = 1 there exists JB of 1 which is at least as large
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Unpublished new certification algorithm
for A" € O(nY)

New Theorem

If A is non-negative real matrix and ps < 1 then for every B
with |A\| = 1 there exists JB of 1 which is at least as large

Input: non-negative real matrix A and degree d
Output: Accept or assertion failure

@ Assert that x4 has no real roots in (1, c0) via Sturm’s
method

@ Assert that each Jordan block of eigenvalue 1 has size
s<d+1

© Accept

certifying matrix growth for complexity proofs
without algebraic numbers

20



Improvements in Automation

® new certification algorithm runs in polynomial time
— there exists polynomial time SAT/SMT-encoding

— possibility to encode desired degree when searching for
matrix interpretation

e currently investigated by TCT-team

21



Part of Paper Proof

Definitions
X:={xeR"|x>0,x+#0}
X1 :={xeX]||x]| =1}
Y:={(A+1)"x|xe X1}
AX);
r(x) := min (A);
JXi#0 X
I'max ‘= max {f(y) ’y € Y}
Lemmas

® X; and Y are compact

® ris continuousonY

® rmax IS well-defined (extreme value theorem)

® I'max = PA

Xa(pa) = > i x8,(pa) > 0 where B; = mat-delete A i i

22



Overview on Formalization

® HMA: Type-based vectors and matrices (. :: finite — «)
® JNF: Carrier-based vectors and matrices (N x (N — «))

HMA library JNF library

compatible dimensions type-system explicit carrier
arithmetic, determinants, ... v v
continuity, compactness, ... v

block-matrices, delete row, ... v

e formalization of Perron-Frobenius requires all features
— develop connection between both worlds: HMA connect

23



Overview of Formalization

Perron-Frobenius

o libraries HMA and JNF
formalization

Part1

oa is eigenvalue «—— Brouwer’s fixpoint theorem
A

extreme value theorem

Part 2 —

more thms for irred. A [ HMA connect _ -
‘ derivative of ya

HMA connect

Part 3
more thms for arbitr. A

block decomposition

24



HMA Connect

® main aim: establish connection between JNF and HMA
® tool: transfer

® define correspondence-relation between vectors,
matrices, ...

HMA ec = N x (N = a) = (¢ = «) — bool
HMA yec vw = (v = (CARD(2), Ni.Wirom-nat i)

where from-nat is some bijection between
vand {0,...,CARD(:) — 1} C N
® prove transfer rules between constants of JNF and HMA
(HMAmat —— HMA ot ——— HMApmat) op + op +
(HMA 2t — op =) det det

® finally transfer complex statements between JNF and HMA

25



Transferring Theorems from JNF to HMA

® JNF lemma for derivative of characteristic polynomial
A € carrier-matnn —

pderiv (charpoly A) = ~,_, charpoly (mat-delete A i i)
¢ transfer to HMA not yet possible: mat-delete not available
® solution: reformulate lemma

A € carrier-matn n — monom 1 1 %

pderiv (charpoly A) = >"._, charpoly (mat-erase A i i)

e transfer to HMA

monom 1 1 « pderiv (charpoly A) =
> _;charpoly (mat-erase A i i)

i<n

26



Transferring Theorems from HMA to JNF

® Perron-Frobenius Theorem Part 1 (HMA)

real-non-neg-mat A — eigenvalue A (spectral-radius A)

® transfer to JNF

A € carrier-mat (CARD(¢)) (CARD(r)) —
real-non-neg-mat A — eigenvalue A (spectral-radius A)

® post-processing with local type definition

A € carriermatnn —n#0 —

real-non-neg-mat A — eigenvalue A (spectral-radius A)

27



Summary

e formalization of Perron-Frobenius theorem:
combination of two libraries via transfer + local types

® new theorem: Jordan blocks of spectral radius are largest

® improving IsaFoR/CeTA:
certifying complexity proofs without algebraic numbers

joint work with Jose Divasén, Sebastiaan Joosten,
Ondrej Kuncar, and Akihisa Yamada
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Future work / work in progress

Check termination proofs of programming languages

® formalize semantics of subset of LLVM IR in Isabelle
(ongoing)

e verify translation to integer transition systems
(future work)

e verify backend for integer transition systems

SMT-solver for LRA (basic solver available, ongoing)
bounds on integer solutions: LIA is in NP (unpublished)
theory-solver for LIA (ongoing)

SMT-solver for LIA (future work)
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